Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The transformative learning scale for the innovation mindset (TLSIM) is an instrument that effectively assesses both process-related experiences and outcome-oriented shifts in students’ self-awareness, open-mindedness, and innovation capabilities resulting from participation in innovation competitions and programs (ICPs), namely, experiential learning opportunities. It was developed using transformative learning theory (TLT) and the Kern Entrepreneurial Engineering Network’s (KEEN) 3Cs framework (Curiosity, Connections, and Creating Value). The study involved developing scale items, validating content and face validity through expert reviews and student focus groups, as well as conducting psychometric analysis using confirmatory factor analysis (CFA) on data collected from 291 STEM students (70.2% from engineering) who participated in ICPs. The CFA results showed strong factor loadings across most constructs, with Root Mean Square Error of Approximation (RMSEA) values within acceptable limits, confirming the robustness of the TLSIM for measuring both process-oriented (RMSEA = 0.047, CFI = 0.929) and outcome-oriented constructs (RMSEA = 0.052, CFI = 0.901) in the development of an innovation mindset. The analysis showed that TLSIM is a reliable and valid instrument with strong psychometric properties for measuring key constructs related to the innovation mindset. TLSIM can capture significant changes in students’ beliefs, attitudes, and self-perceptions regarding innovation. Future research should refine TLSIM across various disciplines.more » « less
- 
            Universities have developed various informal learning experiences, such as design challenges, hackathons, startup incubator competitions, and accelerator programs that engage students in real-world challenges and enable environments for creative problem-solving. However, limited studies explain the extent and nature of the impact of student innovation competitions and programs (ICPs) on participating students' innovation mindset. Current literature was analysed using network analytics techniques to discover relations among ICPs and innovation skills. Using an online instrument, 194 students from two universities categorised and ranked skills/abilities they gained as the most or least improved due to participating in ICPs and their challenges during ICPs. The collected data was analysed to gain insight into the student's experiences and perceptions. The findings of this study showed that overall, students rated technical and problem-solving skills higher than some innovation mindset skills. However, the findings also suggested that incorporating more entrepreneurial elements in ICPs may improve the innovation mindset learning outcomes of ICPs. The findings contribute to how ICPs can be better designed to foster an innovation mindset, mitigate challenges that students come across, and increase the participation of all students.more » « less
- 
            Engineering and computing education have always embraced student Innovation Competitions and Programs (ICPs), such as design challenges, hackathons, startup competitions, and boot camps. These programs are typically organized to increase interest in STEM fields, achieve the broader objective of forming well-rounded engineers and encourage students to bring their innovative ideas into real life. In addition, all ICPs also aim to advance students' innovative thinking skills. With the increased focus on entrepreneurship and innovation in STEM programs, many higher education institutions now organize some form of ICPs. This increased popularity of ICPs bears the questions of (i) whether ICPs achieve their intended objectives, (ii) what program components are most effective, and (iii) how to design ICPs for recruiting diverse student groups. Although these questions are highly relevant to advancing the educational benefits of ICPs, the literature lacks holistic studies focusing on the best practices of ICPs. In this paper, we present the findings of a qualitative research study to investigate ICP types and attributes that make the most impact on fostering an innovation mindset. We interviewed the organizers of ICPs to understand their objectives for organizing their events and rationales for specific program elements. Besides, we asked questions about how they promote their events, the best ways to reach out to students, team selection and forming, their assessment and judging procedures, during and after competition support, and the best practices and challenges. These interview scripts were transcribed, coded, and analyzed using qualitative data analysis software. An analysis of extracted thematic concepts was performed to identify the best practices and strategies that ICP organizers utilize to increase the Impact of their programs. The paper presents the preliminary results of this thematic analysis of the codes. Overall, findings suggest that incorporating more entrepreneurial elements, innovation training in ICPs, and effective mentoring may improve the learning outcomes related to innovative thinking skills.more » « less
- 
            Like many faculty, we have organized student innovation competitions and programs (ICPs) and coached many student teams for various competitions; therefore, we have observed first-hand how transformational the experience has been for our students. ICPs allow students to quickly test their skills and knowledge, push them beyond their comfort zones, encourage them to take risks, and provide a safe place to try and fail, as failures can be seen as a critical part of the learning process. Despite their invaluable learning benefits, existing literature lacks a theoretical body of knowledge on the influence of ICPs on the educational experience. Our goal is to explore transformations in students’ mindsets toward innovation through perspectives and data from students who formerly participated in ICPs, mentors who coach students through ICPs, and ICP organizers who create these opportunities for students. This paper will focus on the essential practices of mentors.more » « less
- 
            Innovation Competitions and Programs (ICPs), such as design challenges, hackathons, startup incubator competitions, boot camps, customer discovery labs, and accelerator programs, are informal learning experiences that supplement the formal education of Science, Technology, Engineering, and Mathematics (STEM) students. As learning dynamics are shifting toward becoming more personalized, location-unbounded, and spontaneous, informal learning is also becoming increasingly important for achieving the broader objectives of STEM education. ICPs are important in educating the next generation of innovators, and they serve as a gateway to innovation and entrepreneurial ecosystems in many colleges. The current literature provides limited quantitative and qualitative evidence on student learning because of participation in ICPs. This paper summarizes the findings of a study to investigate the learning and experiences of students who participated in ICPs. The results showed that overall, students rated technical and problem-solving skills higher than some innovation mindset skills, such as understanding people’s needs and pains. Furthermore, the results demonstrated relationships among student backgrounds, learning experiences, and ICP types. Findings suggested that incorporating more entrepreneurial elements in ICPs may improve the innovation mindset learning outcomes of ICPsmore » « less
- 
            Innovation Competitions and Programs (ICPs), such as design challenges, hackathons, startup incubator competitions, boot camps, customer discovery labs, and accelerator programs, are informal learning experiences that supplement the formal education of Science, Technology, Engineering, and Mathematics (STEM) students. As learning dynamics are shifting toward becoming more personalized, location-unbounded, and spontaneous, informal learning is also becoming increasingly important for achieving the broader objectives of STEM education. ICPs are important in educating the next generation of innovators, and they serve as a gateway to innovation and entrepreneurial ecosystems in many colleges. The current literature provides limited quantitative and qualitative evidence on student learning because of participation in ICPs. This paper summarizes the findings of a multi-institutional study to investigate the learning and experiences of students who participated in ICPs. The results showed that overall, students rated technical and problem-solving skills higher than some innovation mindset skills, such as understanding people’s needs and pains. Furthermore, the results demonstrated relationships among student backgrounds, learning experiences, and ICP types. Findings suggested that incorporating more entrepreneurial elements in ICPs may improve the innovation mindset learning outcomes of ICPs.more » « less
- 
            Many students in Science, Technology, Engineering, and Mathematics (STEM) fields seek to expand their technical knowledge, develop an innovative mindset, and build teamwork and communication skills. To respond to this need, many higher education institutions and foundations have broadened their co-curricular program offerings to include design challenges, hackathons, startup competitions, customer discovery labs, and pitch competitions that are designed to support and benefit student innovators. Faculty mentors are responsible for being available to students to answer questions, guide student thinking, and advise student teams to facilitate learning. For these students to gain crucial knowledge and at least be educationally successful in these programs, a mentor possessing key traits and using certain strategies is proven to be highly influential. While much research supports the importance and benefit of STEM students’ participation in these programs, literature discussing the effective strategies for mentoring students participating in these programs remains limited. Exploring the best mentoring practices will provide insight into how to support and prepare students for innovation competitions and their upcoming careers as well as catalyze their entrepreneurial minds for future success. Based on a series of interviews with experienced mentors of innovation competitions and programs, this paper presents a set of best practices for mentoring student innovation teams.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available